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Boring admin stuff

• Problem set 4 will be posted today; mandatory
• Due dates:

• Problem set 4: December 2nd, 11:59PM
• Quiz 2: November 30th to December 4th
• Group project: December 6th, 11:59PM

• Group project: you should find your teams ASAP
• I post interesting articles on MyCourses

2



Final project

• 1500 words
• Teams of four
• Pick one article out of 5 and critique it
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Articles to choose from

Article Authors Substantive content Methodology

The Signs of

Deconsolidation

Roberto Stefan

Foa and Yascha

Mounk

Attitudes toward democracy in

advanced democracies

Quantitative

analysis of survey

data

The Great Divide: Literacy,

Nationalism, and the

Communist Collapse

Keith Darden and

Anna

Grzymala-Busse

Explaining cross-country

variation in the success of

communist parties in

post-communist countries

Cross-country

regression

Conceptual Models and

the Cuban Missile Crisis

Graham T. Allison Analysis of the Cuban Missile

Crisis and foreign affairs

decision-making

Case study using

historical evidence

Sources of Authoritarian

Responsiveness: A Field

Experiment in China

Jidong Chen,

Jennifer Pan, and

Yiqing Xu

What motivates government

officials in an authoritarian

state to be responsive to

public demands?

Field experiment in

China

Democracy, Autocracy, and

Revolution in Post-Soviet

Eurasia

Henry E. Hale The success or failure of

transitions to democracy in

post-communist Eurasia

Comparative

analysis
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Exploration of midterm data
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Exploration of midterm data
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When do you believe me?

Let’s suppose that after the midterm, I tell you that the mean grade is 73

• You suspect that I’m lying, for some reason…
• But don’t want to call me out unless you’re quite sure
• You ask a colleague in lab about their grade…

• Then another, and another, and another…

• When do you have enough evidence to call me out?
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Meeting students

Table 1: Grades of students you meet in lab

Student # Grade

1 63

Do you call me a liar?
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Meeting students

Table 2: Grades of students you meet in lab

Student # Grade

1 63
2 67

Do you call me a liar?
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Meeting students

Table 3: Grades of students you meet in lab

Student # Grade

1 63
2 67
3 71

Do you call me a liar?
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Meeting students

Table 4: Grades of students you meet in lab

Student # Grade

1 63
2 67
3 71
4 56

Do you call me a liar?
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Meeting students

Table 5: Grades of students you meet in lab

Student # Grade

1 63
2 67
3 71
4 56
5 77

Do you call me a liar?
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Meeting students

Table 6: Grades of students you meet in lab

Student # Grade

1 63
2 67
3 71
4 56
5 77

6 47

Do you call me a liar?
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The null hypothesis

The setup:

• We set a null hypothesis, also referred to as 𝐻0
• The null hypothesis is our reference point – it is arbitrary!
• It’s a sort of statistical “strawman”

• We then set an alternative hypothesis, or 𝐻1
• If the null is not true, then the alternative hypothesis must be true

• We start from the premise that the null hypothesis is true
• The key question: How surprised are you to see the data that you
have, if the null hypothesis is true?

• Evidence is inconsistent with the null⇝ reject the null
• Evidence is not inconsistent with the null⇝ fail to reject the null

• This is the framework of hypothesis testing
• Start from the null
• Think about what the data should look like, if the null were true
• Analyze the data; reject/fail to reject the null 14



The null hypothesis in our example

What was the null hypothesis in the example above?

• 𝐻0: 𝜇𝑒𝑥𝑎𝑚 = 73

What was the alternative hypothesis?

• 𝐻1: 𝜇𝑒𝑥𝑎𝑚 ≠ 73 (non-directional hypothesis)
• 𝐻1: 𝜇𝑒𝑥𝑎𝑚 > 73 (directional hypothesis)
• 𝐻1: 𝜇𝑒𝑥𝑎𝑚 < 73 (directional hypothesis)
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Hypothesis testing in our example

Assume that the null is true – i.e. the true mean is 73

• What do you expect to see when talking to your peers?

• You expect to see have a sample mean of roughly 73!
• It might be 71, it might be 75

• Central limit theorem: the sampling distribution is normal and
centered on the true population parameter

• But you would be surprised to talk to 20 random students and learn
that their mean grade is 59

• The data would be inconsistent with the null hypothesis
• At some point, the data is so inconsistent with the null hypothesis
that we are comfortable rejecting it

• How much we need to see before rejecting the null depends on the
confidence level that we set
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Sampling distributions

If the midterm average really is 73, the sampling distribution should look
like this:
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Sampling distributions

I can also show this using a density plot:
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Sampling distributions with different SD

My sampling distribution may have a different standard deviation:
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The sampling distribution and hypothesis

Whatever the particular SD of sampling distribution…

• It should approximate a normal distribution and be centered on the
true parameter

• The key feature of a normal distribution:
• About 68.4% of the data is within 1SD of the mean
• About 95% of the data is within 2SD of the mean
• About 99.7% of the data is within 3SD of the mean

• Therefore, if the null is true, I am…
• Not surprised to observe a sample statistic that’s 1SD away from the
null

• Surprised to observe a sample statistic that’s 2 SDs away from the
null

• Very surprised to observe a sample statistic that is 3 SDs away from
the null
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What does my sampling distribution looks like?

Remember that, in practice, we only draw a single sample

• We do not observe the sampling distribution
• But, the sampling distribution has 2 properties:

• The mean
• We will assume that the mean is equal to whatever the null hypothesis

indicates

• Standard deviation, for which we have a good guess:

• ̂𝑆𝐸 = �̂�√𝑛
• With this in mind, we have a good idea of what the sampling
distribution should look like if the null were true

• And therefore we know how unlikely it is to have drawn the sample
that we drew
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A hypothetical sampling distribution

H0:µ=73
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A hypothetical sampling distribution

H0:µ=73Surprised to see this! Surprised to see this!
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A hypothetical sampling distribution

H0:µ=73

Not surprised to see this!
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But what about small samples?

Any problem with the previous figure?

• If we draw a single outlying value, should we be surprised?
• Not enough for us to reject the null hypothesis! It’s just a single
value

• So what is the problem with the normal distribution?
• It doesn’t take into account sample size

• So instead, we’ll use the t-distribution
• It has an additional parameter: degrees of freedom
• For our purposes, “degrees of freedom” refers to sample size
• With a very high number of degrees of freedom, the t-distribution is
just like the normal

• With lower “df”, the t-distribution has “fatter tails”⇝ higher
probability of extreme values

25



The t-distribution

Normal distribution
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p-values

I now “know” what the sampling distribution would look like under the
null:

• I know where it peaks (at the null hypothesis, e.g. 𝐻0: 𝜇 = 73)
• I “know” its standard deviation by estimating the standard error

• 𝑆𝐸 = �̂�√𝑛
• I know the “degrees of freedom” parameter (the sample size)

The next step: how likely is the data I observe, if the null is true?

• If 𝜇true = 73, I’m not surprised to draw a sample with mean - 73
• At some point, the data I observe is so unlikely to have been
produced by sampling from a population with 𝜇true = 73 that I must
reject the null
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p-values

• Even if I draw a sample that’s far from 𝐻0, it’s possible I drew a
weird sample by chance

• e.g. it is possible to draw 20 random students with 𝜇grade = 62 even
if the true mean is 73

• But there is a point where it’s so unlikely that I’m comfortable
rejecting the null

• This is our prespecified significance level (often 𝛼 = 0.05)
• When looking at our data, we can compute a p-value

• The p-value is a number between 0 and 1
• It represents the expected probability of observing the sample data,
if the null hypothesis were true

• p-value close to 1: given the null, we’re not surprised to see this⇝
fail to reject the null

• p-value close to 0: given the null, we’re surprised to see this⇝ reject
the null

• 𝑝 < 𝛼: reject the null; 𝑝 > 𝑎𝑙𝑝ℎ𝑎: fail to reject the null
28



Interpreting p-values

Let’s say I randomly sample students and compute a mean grade of 67

• 𝐻0: 𝜇true = 73
• Let’s say I get a p-value of 0.13; what I can say:

• If I were to repeatedly sample from our population (students who
took the midterm)…

• I would expect to get a result as “extreme” as this (extreme = far away
from the null hypothesis)…

• In about 13% of repeated samples…
• If the null hypothesis is true

• In other words: it’s somewhat unlikely, but very much possible
• With 𝛼 = 0.05, we fail to reject the null that the mean is 73

• Can we conclude that the mean is 73?
• NO! We do NOT “accept” the null; we “fail to reject”

• There is no statistically significant difference between our sample
mean and the null hypothesis 29



p = 0.4 (with non-directional hypothesis)
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p = 0.2 (with non-directional hypothesis)
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p = 0.1 (with non-directional hypothesis)
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p = 0.05 (with non-directional hypothesis)
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One-sample t-test in R

# the hypothetical grades I gave you earlier
grades <- c(63, 67, 71, 56, 77, 47)
t.test(grades, mu = 73)

##
## One Sample t-test
##
## data: grades
## t = -2.1615, df = 5, p-value = 0.08303
## alternative hypothesis: true mean is not equal to 73
## 95 percent confidence interval:
## 52.20211 74.79789
## sample estimates:
## mean of x
## 63.5

Interpret the confidence interval and the p-value

• Should you call me a liar?
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When should you have called me a liar?

Table 7: Grades of students you meet in lab

Student # Grade p_value

1 63 NA
2 67 0.156
3 71 0.122
4 56 0.072
5 77 0.156

6 47 0.083
7 55 0.034

You can call me a liar when you get the 7th data point!

• (Assuming 𝛼 = 0.05) 35



Type I and Type II errors

When 𝑝 is very small, we’re very surprised by the data we’re seeing

• But weird samples happen!
• It’s not impossible that the null is true given the data; it’s just very
unlikely

Take the example above

• If 100 of you talk to peers and ask about their midterm grade
• Each person sets 𝛼 = 0.05
• 5 people will accuse me of lying even if the true mean is 73

• i.e. they will draw data that is inconsistent with what I said, even if
what I said is true

• This is Type I error: I reject the null when the null is actually true
• Also known as a false positive
• By setting a lower 𝛼, I reduce the chances of Type I errors
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Type I and Type II errors

Type II error is the opposite

• You fail to reject the null when the null is actually not true
• Also known as a false negative
• By setting a lower 𝛼, you increase the chances of Type II error
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Differences-in-means

I just presented an example of one hypothesis test where we examined
the mean of a variable against some null hypothesis

• Hypothesis tests can be conducted for many different hypotheses
• Another important application: differences-in-means
• Remember what we did in assignment 2 (causality)?

druckman <- read_csv("lectures/lecture_11.1/druckman_2003.csv")
druckman %>%
group_by(tv) %>%
summarise(who_won = mean(won2,na.rm = T) %>% round(3))

## # A tibble: 2 x 2
## tv who_won
## <dbl> <dbl>
## 1 0 0.38
## 2 1 0.262
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The setup

Again, we have a null hypothesis; what is it?

• 𝐻0: 𝜇1 = 𝜇2

And we have an alternative hypothesis: 𝐻1: 𝜇1 ≠ 𝜇2

If the null is true, what do we expect to see?

• If we draw many repeated samples…
• And compute the difference-in-means for each…
• The sampling distribution should be centered on 0

And again, depending on how surprising the data is given the null, we
decide to reject the null or fail to reject it
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The difference-in-means in R

t.test(druckman$won2[druckman$tv==0], druckman$won2[druckman$tv==1])

##
## Welch Two Sample t-test
##
## data: druckman$won2[druckman$tv == 0] and druckman$won2[druckman$tv == 1]
## t = 3.4387, df = 166.76, p-value = 0.0007382
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.05022681 0.18565360
## sample estimates:
## mean of x mean of y
## 0.3798450 0.2619048

The difference-in-means is different from 0 in a statistically significant
manner
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The difference-in-means in R

# equivalent to the above
t.test(druckman$won2 ~ druckman$tv) # mu = 0 is the default

##
## Welch Two Sample t-test
##
## data: druckman$won2 by druckman$tv
## t = 3.4387, df = 166.76, p-value = 0.0007382
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.05022681 0.18565360
## sample estimates:
## mean in group 0 mean in group 1
## 0.3798450 0.2619048
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How to interpret the difference-in-means

Are differences-in-means causal quantities?

• Well, it depends!
• If they’re means from experimental conditions⇝ causal
interpretation

• If not, it’s probably hard to interpret them causally
• But they’re still interesting!
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The dangers of hypothesis testing

Null hypothesis statistical testing is, by far, the dominant approach

• But it is easy to misinterpret what our statistical tests are saying
• Much discussion recently in the scientific community!
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Political Analysis
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“p-hacking”

We’ve seen that there a (completely arbitrary) threshold below which
results are considered “statistically significant”

• Publication is much easier if you achieve statisticaly significance
• Incentive: play around with data until you achieve p < 0.05

• Play around: add/remove control variables, remove observations, use
alternative measures…

• Called: p-hacking, researcher degrees of freedom, garden of forking
paths…

• This is a widespread problem that we are just starting to grapple
with

• But when you think about it…
• Are you really more certain of your result if p = 0.049 compared to p =
0.051?
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Wrong side of the arbitrary threshold
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Jelly beans and acne
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Significance
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Significance as a dummy

Your results are either statistically significant or they’re not

• If p = 0.06 and you set 𝛼 = 0.05, your finding is not statistically
significant

• What should we do? More research!
• Hopefully with a larger sample that will be able to detect an effect

You will often see papers that ignore this because they want significant
results (remember publication bias?)

• “approaches significance”, “marginally significant”…
• For a longer (and hilarious) list, see here
• “As well as being statistically flawed (results are either significant or not and can’t

be qualified), the wording is linguistically interesting, often describing an aspect of
the result that just doesn’t exist. For example, “a trend towards significance”
expresses non-significance as some sort of motion towards significance, which it
isn’t: there is no ‘trend’, in any direction, and nowhere for the trend to be ‘towards’.”

49
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Statistical vs substantive significance

Above all, we may not care about a statistically significant finding

Statistical significance ≠ substantive significance

It is possible to have a statistically significant difference that is
substantively not meaningful

• e.g. a large survey (60,000) shows that mean happiness for Facebook
users is 7.64 on 1-10 scale and 7.68 for non-Facebook users

• Given the sample size, we may find a statistically significant different
difference, e.g. 𝑝 < 0.01

• But do we actually care?
• Substantive significance: does it pass the “so what” test?
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Why should I care?

Real-world decisions and our understanding of the world depend on our
interpretation of ours results

• And our interpretation depends on whether we have statistical
significance
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Why should I care?
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